skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmed, Shahzad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The solar wind plasma is characterized by unequal effective kinetic temperatures defined in perpendicular and parallel directions with respect to the ambient magnetic field. For electrons, the excessive perpendicular temperature anisotropy leads to quasi-parallel electromagnetic electron cyclotron (or whistler) instability and aperiodic electron-mirror instability with oblique wave vectors. The present paper carries out a direct side-by-side comparison of quasi-linear (QL) theory and particle-in-cell (PIC) simulation of combined mirror and cyclotron instabilities acting upon the initially anisotropic electron temperatures, and find that the QL theory satisfactorily encapsulates the non-linear aspect of the combined instability effects. However, a discrepancy between the present study and a previous PIC simulation result is also found, which points to the need for further investigation to resolve such an issue. 
    more » « less